json2py Documentation
Release 0.1a

Victor Cabezas

March 27, 2016

Contents

1 Contents: 3
L1 USage . . o v o o e e e e e e e e e e e e 3
LI Models e e e e e e e e 4

1.2 EXCEPUONS . . . o v i ot e e e e e e e e e e e e e e e e e e 6
1.2.1 ParseEXception e e e e e 6

1.3 Examples oo e e e e e e e 7
1.3.1 Modeling Github APT e 7

14 Changelog o e e e e e e e e e 10

2 Indices and tables 11
Python Module Index 13

json2py Documentation, Release 0.1a

The goal of this module is to map plain json strings and json . loads structures into Python objects.

Contents 1

json2py Documentation, Release 0.1a

2 Contents

CHAPTER 1

Contents:

1.1 Usage

Note: For extended and more in depth examples, refer to Examples

The following example illustrates how this module works.

from json2py.models import x

class Example (NestedField) :
hello = TextField(name =
integer = IntegerField()
floating = FloatField()

Thi')

class ExampleList (ListField):

__model__ = Example
{"hi': 1000,
[dict_var]

'world', 'integer':

* 3

dict_var =
list_var =

myMappedList = ExampleList (list_var)

myMappedList[1].integer.value = 1234

print myMappedList. json_encode (indent = 4)

'floating':

10.

5,

'ignored’':

"you won't see

Should return something like:

[

"integer": 1000,
"floating": 10.5,
"hello": "world"
}y
{
"integer": 1234,
"floating": 10.5,
"hello": "world"
}I
{
"integer": 1000,
"floating": 10.5,

men}

json2py Documentation, Release 0.1a

"hello": "world"

1.1.1 Models

Note: The classes of this modules are intended to be reimplemented in order to make use of this module.

Models represent basic JSON data types. The usage of this models is intended to be subclassed in order to fully map
the original JSON structure.

BaseField
class json2py.models.BaseField (value=None, name=None, required=True)
Base Class holding and defining common features for all the other subclasses.
Parameters
* value — Value to be stored
* name — Name of the field in source data.
* required — Whether raise LookupError when key is missing or not.
Note This class must be treated as abstract class and should not be reimplemented.

json_decode (data, **kwargs)
Parses a JSON-string into this object. This method is intended to build the JSON to Object map, so it
doesn’t return any value, instead, the object is built into itself.

Parameters
* data — JSON-string passed to json.loads ()
* kwargs — Parameters passed to json. loads ()

json_encode (**kwargs)
Converts an object of class BaseField into JSON representation (string) using BaseEncoder JSO-
NEncoder.

Parameters kwargs — Parameters passed to json.dumps ()

Returns JSON-string representation of this object.

TextField
class json2py.models.TextField (value=None, name=None, required=True)
Class representing a string field in JSON.
Parameters
* value — It is the raw data that is this object will represent once parsed.
* name — It has the same meaning as in BaseField
* required - It has the same meaning as in BaseField

Raises ParseException - If value is not a string nor None

4 Chapter 1. Contents:

https://docs.python.org/2.7/library/json.html#json.loads
https://docs.python.org/2.7/library/json.html#json.loads
https://docs.python.org/2.7/library/json.html#json.dumps

json2py Documentation, Release 0.1a

IntegerField
class json2py.models. IntegerField (value=None, name=None, required=True)
Class representing an integer field in JSON.
Parameters
* value - It is the raw data that is this object will represent once parsed.
* name — It has the same meaning as in BaseField
* required - It has the same meaning as in BaseField

Raises ParseException — If value is not a integer nor None

FloatField
class json2py.models.FloatField (value=None, name=None, required=True)
Class representing a float field in JSON.
Parameters
* value - It is the raw data that is this object will represent once parsed.
* name — It has the same meaning as in BaseField
* required - It has the same meaning as in BaseField

Raises ParseException — If value is not a float nor None

BooleanField
class json2py.models.BooleanField (value=None, name=None, required=True)
Class representing boolean field in JSON.
Parameters
* value - It is the raw data that is this object will represent once parsed.
* name — It has the same meaning as in BaseField
* required - It has the same meaning as in BaseField

Raises ParseException — If value is not boolean nor None

Todo

Document how to access elements in NestedField with same name than Python’s reserved keywords.

NestedField
class json2py.models.NestedField (value=None, name=None, required=True)
Class representing a document field in JSON.
Parameters
* value - It is the raw data that is this object will represent once parsed.

* name — It has the same meaning as in BaseField

1.1. Usage 5

json2py Documentation, Release 0.1a

* required - It has the same meaning as in BaseField

Raises ParseException - If value is not a dict nor None

ListField

class json2py.models.ListField (value=None, name=None, required=True)
Class representing a list field in JSON. This class implements 1ist interface so you can slicing, appending,

popping, etc.
Parameters
* name — It has the same meaning as in BaseField
* value - It is the raw data that is this object will represent once parsed.
* required - It has the same meaning as in BaseField
Raises ParseException — If value is not a list nor None

Note Hinting the structure of values of the list should be done using the meta variable __model___
inside class reimplementation.

Note JSON lists’ values can be of any type even in the same list, but in real world apps, every JSON
lists” values should be of the same type, this behaviour also simplifies this module, so this class
expects that all values in lists must have the same structure.

DateField

class json2py.models.DateField (value=None, name=None, required=True, formatting="%Y-%m-

Y%odT%H: %M :%SZ’)
Class used to parse and represent dates. It makes use of datetime and dateutil.

Parameters
* name - It has the same meaning as in BaseField
* value - It is the raw data that is this object will represent once parsed.
* required - It has the same meaning as in BaseField
* formatting — Format used to represent date.
Raises ParseException - If value is not valid nor None

Note Several format’s can be in formatting: auto: use
dateutil.parser.parse (), timestamp: provide UNIX timestamp and use
datetime.datetime.utcfromtimestamp () and custom string: use any format
in compliance with datetime.datetime.strptime () valid formats.

1.2 Exceptions

1.2.1 ParseException

class json2py.models.ParseException
Exception raised when an error occur trying to parse data on any of BaseF'ield subclasses.

6 Chapter 1. Contents:

https://docs.python.org/2.7/library/datetime.html#module-datetime
https://docs.python.org/2.7/library/datetime.html#datetime.datetime.utcfromtimestamp
https://docs.python.org/2.7/library/datetime.html#datetime.datetime.strptime

json2py Documentation, Release 0.1a

1.3 Examples

In the examples below, we will try to learn how to model JSON with json2py‘. We will cover how to re-utilize
models into bigger ones, like JSON support sub-documents. We will also learn how to model a list of JSON documents.

1.3.1 Modeling Github API

For the examples we will try to model Github’s public API (or at least a part of it). We will be model the
user response from https://api.github.com/users/{user} using my user account, we will model this repo information
on https://api.github.com/users/{user}/{repo_name} And with a bit more effort we will model the repo listing on
https://api.github.com/users/{user}/repos. In this example, requests module will be used for simplicity, but the
way of requesting remote resources is up to you.

Let’s begin!

User modelling

The user data used on this example will be extracted from https://api.github.com/users/wiston999

Let’s suppose we want to grab the user’s id, login, url, type and if user is admin. This task can be done with the
following code.

We will map the type key into a field named user_type into our model.

Listing 1.1: models.py

from json2py.models import =x

class User (NestedField) :
login = TextField()
id = IntegerField()
url = TextField()
user_type = TextField(name = 'type')
site_admin = BooleanField()

And we are all done! Now let’s request the Github’s user info endpoint.

Listing 1.2: examplel.py

import requests
from models import User

response = requests.get ('https://api.github.com/users/wiston999")
my_user = User (response. json())

print my_user.login.value, "'s stats:"

print "id:", my_user.id.value

print "login:", my_user.login.value

print "url:", my_user.url.value

print "type:", my_user.user_type.value

print "site_admin:", my_user.site_admin.value

Output after executing this code is

Wiston999 's stats:
id: 1099504
login: Wiston999

1.3. Examples 7

https://api.github.com/users
https://api.github.com/users
https://api.github.com/users
https://api.github.com/users/wiston999

json2py Documentation, Release 0.1a

url: https
type: User

site_admin:

://api.github.com/users/Wiston999

False

This is how

modeling works, all you have to do is define class variables into the class inheriting from

jsonZpy.models.NestedField

Repository

The next step

modeling

will be modeling a repository information from Github. We will use the information from this repository,

https://api.github.com/repos/wiston999/json2py. We want to get the id, name, full_name, is_private, description, size,
language, default_branch and the owner fields. One can notice that owner nested document looks familiar, as it
shares several fields with the data on https://api.github.com/users/wiston999. We notice too that shared data is already

modeled into the previous example, so, let’s use a bit of code re-utilization.

Listing 1.3: models.py

class User (NestedField) :
login = TextField()
id = IntegerField()
url = TextField()
user_type = TextField(name = 'type')
site_admin = BooleanField()

class Repo (NestedField) :
id = IntegerField()
name = TextField()
full_name = TextField()
owner = User ()
is_private = BooleanField(name = 'private')
description = TextField()
size = IntegerField()
language = TextField()
default_branch = TextField()

Notice how the owner field is an instance of User class defined above.

Let’s try these models

Listing 1.4: example2.py

import requests
from models import User, Repo

response = requests.get ('https://api.github.com/repos/wiston999/json2py")
this_repo = Repo (response. json())

print this_repo.name.value, "'s stats:"

print "id:", this_repo.id.value

print "full name:", this_repo.full name.value

print "owner:", this_repo.owner.login.value

print "private:", this_repo.is_private.value

print "description:", this_repo.description.value

print "language:", this_repo.language.value

print "default branch:", this_repo.default_branch.value

Will output

8 Chapter 1. Contents:

https://api.github.com/repos/wiston999/json2py
https://api.github.com/users/wiston999

json2py Documentation, Release 0.1a

json2py 's stats:

id: 54333024

full _name: Wiston999/json2py

owner: Wiston999

private: False

description: Convert JSON/dict to python object and viceversa
language: Python

default_branch: master

Repository list modeling
As a last example, lest loop the loop, we are going to model the data returned by

https://api.github.com/users/Wiston999/repos request. We see that this is a list of repositories, which we have
already modeled, so, this should be as simple as

Listing 1.5: models.py

class User (NestedField) :
login = TextField()
id = IntegerField()
url = TextField()
user_type = TextField(name = 'type')
site_admin = BooleanField()

class Repo (NestedField) :
id = IntegerField()
name = TextField()
full_name = TextField()
owner = User ()
is_private = BooleanField(name = 'private')
description = TextField()
size = IntegerField()
language = TextField()
default_branch = TextField()

class RepoList (ListField):
__model__ = Repo

Everything done! Let’s try it

Listing 1.6: example3.py

import requests
from models import Repolist

response = requests.get ('https://api.github.com/users/wiston999/repos’)

user_repo_list = RepoList (response. json())

print "wiston999's repositories:"

for repo in user_repo_list:
print "Repository name:", repo.name.value, "with id:", repo.id.value, "written in",
print "Repository Owner:", repo.owner.login.value
print '-'x%70

And the output

1.3. Examples 9

repo.languags

https://api.github.com/users/Wiston999/repos

json2py Documentation, Release 0.1a

wiston999 repositories:

Repository
Repository

name:
Owner:

BRTMT with id:
Wiston999

24468609 written in JavaScript

Repository
Repository

cursoJS with id:
Wiston999

14053600 written in JavaScript

Repository
Repository

DDSBox with id:
Wiston999

36035006 written in Java

Repository
Repository

DSS with id:
Wiston999

20038644 written in Python

Repository
Repository

ISIII with id:
Wiston999

3630135 written in None

Repository
Repository

json2py with id:
Wiston999

54333024 written in Python

Repository
Repository

Plataforma with id:
Wiston999

2506501 written in Python

Repository
Repository

name:

repos—git with id:
Wiston999

20038280 written in Python

1.4 Changelog

* 0.1: First version, base implementation done. Added docs and tests.

¢ 0.2: Added DateField, added optional fields, fixed some bugs.

10

Chapter 1. Contents:

CHAPTER 2

Indices and tables

¢ genindex
* modindex

e search

11

json2py Documentation, Release 0.1a

12 Chapter 2. Indices and tables

Python Module Index

j

json2py.models, 4

13

json2py Documentation, Release 0.1a

14 Python Module Index

Index

B

BaseField (class in json2py.models), 4
BooleanField (class in json2py.models), 5

D

DateField (class in json2py.models), 6

F

FloatField (class in json2py.models), 5

IntegerField (class in json2py.models), 5

J

json2py.models (module), 4, 6
json_decode() (json2py.models.BaseField method), 4
json_encode() (json2py.models.BaseField method), 4

L

ListField (class in json2py.models), 6

N

NestedField (class in json2py.models), 5

P

ParseException (class in json2py.models), 6

T

TextField (class in json2py.models), 4

15

	Contents:
	Usage
	Models

	Exceptions
	ParseException

	Examples
	Modeling Github API

	Changelog

	Indices and tables
	Python Module Index

